Chapter 6

Pointers

In the preceding chapters, our programs have been written to access objects directly, i.e. using
the variable names. We have postponed until now a discussion of the concept of indirect access,
i.e. access of objects using their address. As we have seen, variables local to a function may
be accessed using their name only within that function. When arguments are passed to another
function, only the values are passed, and the called function may use these values, but cannot
affect the variable cells in the calling function. Sometimes, however, a function needs to have
direct access to the cells in another function. This can be done in C through indirect access, using
the address of the cell, called a pointer.

In this chapter, we will introduce the concepts of indirect access, pointer types, and dereferenced
pointer variables. We will use these concepts to write functions that indirectly access objects in a
calling function.

6.1 What is a Pointer?

Frequently, a called function needs to make changes to objects declared in the calling function. For
example, the function, scanf (), needs to access objects in the calling function to store the data
read and converted into an object defined there. Therefore, we supply scanf () with the address
of objects rather than their values. Here, we will see how any function can indirectly access an
object by its address.

Another common use of pointers is to write functions that “return” more than one value. As
we have seen, every function in C returns a value as the value of the function; however, if a
function’s meaning includes the return of several pieces of information, this single return value
is not sufficient. In these cases, we can have the function return multiple data values indirectly,
using pointers.

255

256 CHAPTER 6. POINTERS

6.1.1 Data vs Address

Before we discuss passing pointers and indirectly accessing data between functions, let us look at
how we can declare pointer variables and access data using them. Consider the following simple

program:

main()

{ int x;
int iptr;
printf ("**xTesting Pointer Variables*x*\n");
x = 10;
iptr = &x;
printf ("/4d\n",iptr);

}

We have declared two integers, x, intended to hold an integer value, and iptr which is intended
to hold a pointer to an integer, i.e. and address of an integer. We then assign a value to x, and
the address of x to the variable iptr using the & (address of) operator. The address of a variable
is simply the byte address of the cell which was allocated by the declaration. An address is an
integer (actually and unsigned integer) so may be stored in an int type variable. The situation is
shown in Figure 6.1a). When we compile and execute this program the result is:

¥*Testing Pointer Variablesxx*
1000

What if we had wanted to print the value of the cell pointed to by iptr and not the value of
iptr itself? The indirection operator, *, accesses the object pointed to by its operand. In our
example, the value of iptr is 1000 which is an address of some object; i.e. iptr points to some
object located at address 1000. So we should be able to access that object with an expression like:

*iptr

However, there is no way to know how many bytes to access at address 1000, nor how to interpret
the data, unless the type of object at address 1000 is known: is it an int? a float? a char?
etc. In order for the compiler to know how to access an object indirectly, it must know the type
of that object. We specity the type of object to access by indicating to the compiler the type of
objects a pointer refers to when we declare the pointer. So, in our example, we should declare the
variable, iptr as a “pointer to an integer” as follows:

int *iptr;

6.1. WHAT IS A POINTER? 257

or
int * iptr;

(white space may separate the operator, *, and the variable name, iptr). The declaration specifies
a variable, iptr, of type int *, i.e. integer pointer (the type is read directly from the declaration).
So, int *is the type of iptr, and int is the type of *iptr — the thing it points to. This statement
declares an integer pointer variable, iptr, and allocates memory for a pointer variable. Similarly,
we can declare float pointers or character pointers:

float * pa, * pb;
char * pc;

These statements declare variables, pa and pb, which can point to float type objects, and pc
which can point to a char type object. All pointer variables store addresses, which are unsigned
integers, and so need the same amount of memory space regardless of the pointer types.

Since the compiler now knows that iptr points to an integer object, it can access the object
correctly. Our simple program becomes:

main()
{ int x;
int *iptr;

printf ("**xTesting Pointer Variables*x*\n");

x = 10;

iptr = &x;

printf("Address %d holds value %d\n",iptr,*iptr);

which produces the output:

¥*Testing Pointer Variablesxx*
Address 1000 holds value 10

We are generally not interested in the value of the pointer variable itself; it may even be different
each time a program is run. Instead, we are interested in the cell the pointer is pointing to, so
we indicate the value of a pointer variable in diagrams and program traces using an arrow («+) as
shown in Figure 6.1b.

In summary, the address of an object is called a pointer to that object since the address tells
one where to go in order to access the object. The address by itself does not provide sufficient

258

CHAPTER 6. POINTERS

main()
int x int iptr
10 1000
a)
main()
int x int *iptr
10 ’
b)

Figure 6.1: Declaring Pointer Variables

6.1. WHAT IS A POINTER? 259

information to access an object; we must know what type of object the address is pointing to.
If the pointer (address) value and the data type of the object that it points to are both known,
then it is possible to access the object correctly. In other words, pointers must be specified to be
int pointers, pointing to an integer type object, float pointers, pointing to a floating point type
object, char pointers, etc.

6.1.2 Indirect Access of Values

The indirection operator, *, accesses an object of a specified type at an address. Accessing an
object by its address is called indirect access. Thus, *iptr indirectly accesses the object that
iptr points to, i.e. *iptr accesses x. The indirection operator is also called the contents of
operator or the dereference operator. Applying the indirection operator to a pointer variable
is referred to as dereferencing the pointer variable, i.e. *iptr dereferences iptr. The address of
operator, &, is used to get the address of an object. We have already used it in calls to scanf ().
We can also use it to assign a value to a pointer variable.

Let us consider some examples using the following declarations:

int x, z;

float y;

char ch, * pch;
int * pi, *pi2;
float * pf;

When these declarations are encountered, memory cells are allocated for these variables at some
addresses as shown in Figure 6.2. Variables x and z are int types, y is float, and ch is char.
Pointer variables pi and pi2 are variables that can point to integers, pf is a float pointer, and
pch is a character pointer. Note that the initial values of all variables, including pointer variables,
are unknown. Just as we must initialize int and float variables, we must also initialize pointer
variables. Here are some examples:

x = 100;

y = 20.0

z = 50;

pi = &x; /* pi points to x */
pi2 = &z; /* pi2 points to z */
pch = &ch; /* pch points to ch */

The result of executing these statements is shown in Figure 6.3: pi points to the cell for the
variable x, pi2 points to z, pch points to ch, and pf still contains garbage. Remember, the value
of a pointer variable is stored as an address in the cell; however, we do not need to be concerned
with the value itself. Instead, our figure simply shows what the initialized pointer variables point

260 CHAPTER 6. POINTERS

main()
int x int z float y char ch
?? ?? ?? 79
o o o o
? ? ? ?
int *pi int *pi2 float *pf char *pch
Figure 6.2: Declaration of Pointer Variables
main()
int x int z float y char ch
100 50 20.0 77
o
?
int *pi int *pi2 float *pf char *pch

Figure 6.3: Assignments of pointers

6.1. WHAT IS A POINTER? 261

main()
int x int z float y char ch
100 50 20.0 77
o
?
int *pi int *pi2 float *pf char *pch

Figure 6.4: Effect of Pointer to Pointer Assignment — Statement 1.

to. These initialized pointers may now be used to indirectly access the objects they point to, or
they be may be changed by new assignments. Here are some examples of statements and how
they change things for the above memory organization. (The statements are numbered in order
to reference them; the numbers are not part of the code).

1: pi2 = pi; /* pi2 points to where pi points */

/* i.e. pi2 ==> x */
2: pi = &z; /* pi now points to z, pi2 still points to x */

/* i.e. pi ==> z, pi2 ==> x x/
3: *pl = *pi2; /¥ z =x, i.e, z = 100 */
4: *pi = 200; /* z = 200, x is unchanged */
5: *pi2 = *pi2 + 200; /* x = 300, z is unchanged */

Statement 1: Assigns value of pi to pi2, so pi2 now also points to x (see Figure 6.4). Since
both of the variables are type int * this assignment is allowed.

Statement 2: Makes pi point to z (see Figure 6.5). The expression &z evaluates to the
address of z; i.e. an int pointer.

Statement 3: Since pi2 points to x, the value of the right hand side, *pi2, dereferences
the pointer and evaluates to the value in the cell, i.e. 100. This value is assigned to
the object accessed by the left hand side, *pi, i.e. the place pointed to by pi or the

262 CHAPTER 6. POINTERS

main()
int x int z float y char ch
100 50 20.0 77
é o
s
int *pi int *pi2 float *pf char *pch

Figure 6.5: Effect of Pointer Reassignment — Statement 2.

object z (see Figure 6.6). This has the same effect as the assignment z = x. Note,
we have used a dereferenced pointer variable as the Lvalue on the left hand side of an
assignment operator. The semantics is to access the object indirectly and store the
value of the expression on the right hand side.

Statement 4: The value, 200, is assigned to *pi, i.e. z (see Figure 6.7). Again, we have
used an indirect access for the Lvalue of the assignment.

Statement 5: The right hand side evaluates to 300, since 200 is added to *pi2; so 300 is
assigned to *pi2, i.e. x (see Figure 6.8). Again, we have used an indirect access on

both the left and right hand sides.

We see that the left hand side of an assignment operator, the Lvalue, can be a reference to
an object either by direct access (i.e. a variable name) or by indirect access (i.e. a dereferenced
pointer variable). Also notice that we were very careful about the type of the objects on the left
and right hand side of the assignment operators. We have assigned an integer value to a cell
pointed to by an integer pointer, and when assigning pointers, we have assigned an integer pointer
to a cell declared as an int *. An assignment statement such as:

6.1.

WHAT IS A POINTER?

main()
int x int z float y char ch
100 100 20.0 77
' Y o '
?
int *pi int *pi2 float *pf char *pch

Figure 6.6: Effect of Indirect Pointer Access and Assignment — Statement 3

main()
int x int z float y char ch
100 200 20.0 77
é 1Y o ¢
?
int *pi int *pi2 float *pf char *pch

Figure 6.7: Effect of Indirect Assignment — Statement 4

263

264 CHAPTER 6. POINTERS

main()
int x int z float y char ch
300 200 20.0 77
é o
s
int *pi int *pi2 float *pf char *pch

Figure 6.8: Effect of Indirect Pointer Access and Assignment — Statement 5

is a legal statement in C: assigning an integer value to a pointer cell. However, the effect may
not be as we would expect. The value of x will be placed in the pointer cell, pi, and subsequent
dereferencing of pi, (*pi), will use that value as a pointer (an address) to find the cell to indirectly
access. This is almost never what we intend to do in this statement. Most C compilers will generate
a warning at compile time stating that an illegal integer-pointer combination in an assignment was
encountered to indicate that something is possibly wrong here. A warning is not an error; it does
not prevent the compiler from generating a functional object file. However, it is an indication that
the statement may not be what the programmer intended. Such a statement is probably correctly

written as:
*pl = X; or pl = &x;

which assign a value to the cell pointed to by pi or to assign an address to pi itself, respectively.
(In the RARE instance where such an assignment of an integer to a pointer cell is intended, the
syntax:

pi = (int *)x;

i.e. casting the integer to an integer pointer, should be used).

Likewise, an attempt to use the uninitialized variable, pf will be a disaster. Suppose we write:

6.1. WHAT IS A POINTER? 265

printf ("%f\n", *pf);

The value of pf is garbage so *pf will attempt to access the garbage address for a float object.
The garbage value of pf may be an invalid memory address, in which case, the program will be
aborted due to a memory fault; a run time error. This is bad news; however, we may be even more
unfortunate if the value in pf is a valid memory address. In this case, we would access a value
from some unknown place in memory. The situation is even worse when an uninitialized pointer
is used indirectly as an Lvalue:

*pf = 3.5;

Since we do not know where pf is pointing, if it happens to be a legal address, we have just
placed the value, 3.5, in some unknown location in memory, possible a cell belonging to a variable
in another part of the program. Finding this type of bug is very difficult. The lesson here is
that care should be taken when using pointers, particularly ensuring that pointers are properly
initialized.

On the other hand, the character variable, ch, is not initialized, but the pointer variable, pch
is initialized to point to ch so the expression, *pch, will access the object, ch, correctly. If the
value of *pch is accessed, it will be garbage; but a value can be stored in *pch correctly.

With proper care, the value of an initialized pointer variable (the address of some object) allows
us to indirectly access the object by dereferencing the pointer variable. An example program,
shown in Figure 6.9, illustrates the value of a pointer variable and the value of the object indirectly
accessed by it.

Figure 6.10 shows program trace graphically. The program first declares an int and an int *
variables (Figure 6.10a)). The first printf () statement prints the program title followed by the
initialization of i1 and iptr (Figure 6.10b)). The next printf () gives the hexadecimal value of
iptr, which is the address of i1. The next statement prints the value of the same object indirectly
accessed by *iptr and directly accessed by i1. Then, the value of *iptris changed (Figure 6.10¢));
and the last statement prints the changed value of the object, accessed first indirectly and then
directly.

The output for a sample run is:

Pointers: Direct and Indirect Access

iptr = 65490
*iptr = 10, 11 = 10
*iptr = 100, 11 = 100

266 CHAPTER 6. POINTERS

/* File: access.c
This program prints out the values of pointers and values of
dereferenced pointer variables.

*/
#include <stdio.h>
main()
{ int *iptr, /* integer pointer */
i1;
printf("Pointers: Direct and Indirect Access\n\n");
/* initializations */
i1 = 10;
iptr = &it1; /* iptr points to the object whose name is il */
/* print value of iptr, i.e., address of i1l */
printf("iptr = Ju\n", iptr);
/* print value of the object accessed indirectly and directly */
printf("*iptr = %d, il = }d\n", *iptr, il);
*iptr = *iptr * 10; /* value of *iptr changed */
/* print values of the object again */
printf("*iptr = %d, il = }d\n", *iptr, il);
by

Figure 6.9: Example Code with Direct and Indirect Access

6.1. WHAT IS A POINTER?

main() main()
int 1l int 1l
77 10
A
) ¢
int *iptr int *iptr
a) b)

Figure 6.10: Trace for Direct and Indirect Access

267

main()

int 11

100

int *iptr

268 CHAPTER 6. POINTERS

6.2 Passing Pointers to Functions

As we have seen, in C, arguments are passed to functions by value; i.e. only the values of argument
expressions are passed to the called function. Some programming languages allow arguments
passed by reference, which allows the called function to make changes in argument objects. C
allows only call by value, not call by reference; however, if a called function is to change the value
of an object defined in the calling function, it can be passed a value which is a pointer to the
object. The called function can then dereference the pointer to access the object indirectly. We
have also seen that a C function can return a single value as the value of the function. However, by
indirect access, a called function can effectively “return” several values. Only one value is actually
returned as the value of the function, all other values may be indirectly stored in objects in the
calling function. This use of pointer variables is one of the most common in C. Let us look at
some simple examples that use indirect access.

6.2.1 Indirectly Incrementing a Variable

We will first write a program which uses a function to increment the value of an object defined
in main(). As explained above, the called function must indirectly access the object defined in
main(), i.e. it must use a pointer to access the desired object. Therefore, the calling function
must pass an argument which is a pointer to the object which the called function can indirectly
access.

Figure 6.11 shows the code for the program and the program trace is shown graphically in
Figure 6.12. The function, main() declares a single integer variable and initializes it to 7 (see
Figure 6.12a)). When main() calls indirect_incr(), it passes the pointer, &x (the address of
x). The formal parameter, p, is defined in indirect_incr() as a pointer variable of type int *.
When indirect_incr() is called, the variable, p gets the value of a pointer the the cell named
x in main() (see Figure 6.12b)). The function, indirect_incr(), indirectly accesses the object
pointed to by p, i.e. the int object, x, defined in main(). The assignment statement indirectly
accesses the value, 7, in this cell, and increments it to 8, storing it indirectly in the cell, x, in
main() (see Figure 6.12¢)).

Sample Session:

***Indirect Access**x*
Original value of x is 7
The value of x is 8

6.2.2 Computing the Square and Cube

Sometimes, whether a value should be returned as the value of a called function or indirectly stored
in an object is a matter of choice. For example, consider a function which is required to “return”

6.2. PASSING POINTERS TO FUNCTIONS

*/

File: indincr.c

Program illustrates indirect access
to x by a function indirect_incr().
Function increments x by 1.

#include <stdio.h>

void

indirect_incr(int * p);

main()

{

/%

void

int x;

printf ("**xIndirect Access***\n");

X = 7;

printf("Original value of x is %d\n", x);
indirect_incr(&x);

printf("The value of x is %4d\n", x);

Function indirectly accesses object in calling function.

indirect_incr(int * p)

*p:*p+1;

Figure 6.11: Code for Indirect Access by a Function

*/

269

270

main()

CHAPTER 6. POINTERS

main()

int x

int x

7

\

D

indirect_incr(int * ¢ |)

b)

Figure 6.12: Trace for Indirect Access by a Function

main()

int x

8

\

indirect_incr(int

D

6.2. PASSING POINTERS TO FUNCTIONS 271

/* File: sqcube.c
Program uses a function that returns a square of its argument and
indirectly stores the cube.

*/

#include <stdio.h>

double sqcube(double x, double * pcube);

main()
{ double x, square, cube;

printf ("***Directly and Indirectly Returned Values***\n");
x = 3;

square = sqcube(x, &cube);
printf("x = ¥f, square = f, cube = ¥%f\n",
X, square, cube);

/* Function return square of x, and indirectly stores cube of x */
double sqcube(double x, double * pcube)
{

*pcube = x * x * x;

return (x * x);

Figure 6.13: Code for Indirectly Returned Values

two values to the calling function. We know that only one value can be returned as the value of
the function, so we can decide to write the function with one of the two values formally returned
by a return statement, and the other value stored, by indirect access, in an object defined in the
calling function. The two values are “returned” to the calling function, one formally and one by
indirection.

Let us write a function to return the square and the cube of a value. We decide that the
function returns the square as its value, and “returns” the cube by indirection. We need two
parameters; one to pass the value to be squared and cubed to the function, and one pointer type
parameter which will be used to indirectly access an appropriate object in the calling function to
store the cube of the value. We assume all objects are of type double.

The code is shown in Figure 6.13. The prototype for sqcube() is defined to have two param-
eters, a double and a pointer to double, and it returns a double value. The printf () prints the
value of x; the value of square which is the value returned by sqcube() (the square of x); and,
the value of cube (the cube of x) which is indirectly stored by sqcube().

272 CHAPTER 6. POINTERS

main()
double x double square double cube
3.0 77 77
sqcube(double double * |°®
X pcube
double

- - = =]

Figure 6.14: Trace for sqcube — Step 1

6.2. PASSING POINTERS TO FUNCTIONS 273

main()
double x double square double cube
3.0 77 77
sqcube(double 3.0 double * |*
X pcube
double

- - = =]

Figure 6.15: Trace for sqcube — Step 2

274 CHAPTER 6. POINTERS

main()
double x double square double cube
3.0 77 27.0
sqcube(double 3.0 double * |*
X pcube
double

- - = =]

Figure 6.16: Trace for sqcube — Step 3

6.2. PASSING POINTERS TO FUNCTIONS

main()
double x double square double cube
3.0 9.0 27.0
3
__________________________ J
sqcube(double 3.0 double * |*
X pcube

. double

Figure 6.17: Trace for sqcube — Step 4

275

276 CHAPTER 6. POINTERS

Figures 6.14 — 6.17 show a step-by-step trace of the changes in objects, both in the calling
function and in the called function. In the first step (Figure 6.14), the declarations for the function,
main() and the template for the function, sqcube() are shown with the initialization of the
variable, x, in main(). In the second step (Figure 6.15), the function, sqcube() is called from
main() passing the value of x (3.0) to the first parameter, (called x in sqcube()), and the value of
&cube, namely a pointer to cube, as the second argument to the parameter, pcube. In the third
step (Figure 6.16), the first statement in sqcube () has been executed, computing the cube of the
local variable, x, and storing the value indirectly in the cell pointed to by pcube. Finally, Figure
6.17 shows the situation just as sqcube() is returning, computing the square of x and returning
the value which is assigned to the variable, square, by the assignment in main().

While only one value can be returned as the value of a function, we loosely say that this
function “returns” two values: the square and the cube of x. The distinction between a formally
returned value and an indirectly or loosely “returned” value will be clear from the context.

Sample Session:

¥*kDirectly and Indirectly Returned Valuesx*
x = 3.000000, square = 9.000000, cube = 27.000000

6.2.3 A function to Swap Values

We have already seen how values of two objects can be swapped directly in the code in main().
We now write a function, swap(), that swaps values of two objects defined in main() (or any
other function) by accessing them indirectly, i.e. through pointers. The function main() calls the
function, swap(), passing pointers to the two variables. The code is shown in Figure 6.18. (We
assume integer type objects in main()).

The function, swap(), has two formal parameters, integer pointers, ptrl and ptr2. A tempo-
rary variable is needed in the function body to save the value of one of the objects. The objects
are accessed indirectly and swapped. Figures 6.19 — 6.22 show the process of function call, passed
values, and steps in the swap.

Sample Session:

Original values: datl = 100, dat2 = 200
Swapped values: datl = 200, dat2 = 100

6.3 Returning to the Payroll Task with Pointers

We will now modify our pay calculation program so that the driver calls upon other functions to
perform all subtasks. The driver, main(), represents only the overall logic of the program; the

6.3. RETURNING TO THE PAYROLL TASK WITH POINTERS 277

/* File: swapfnc.c
Program uses a function to swap values of two objects.
*/
#include <stdio.h>
/* arguments of swap() are integer pointers */
void swap(int * pl, int * p2);

main()
{ int datl = 100, dat2 = 200;

printf("Original values: datl = %d, dat2 = Jd\n", datl, dat2);
swap (&datl, &dat2);
printf ("Swapped values: datl = Jd, dat2 = %d\n", datl, dat2);

/* Function swaps values of objects pointed to by ptrl and ptr2 */
void swap(int * ptrl, int * ptr2)
{ int temp;

temp = *ptri;
*ptril *ptr2;
*ptr2 = temp;

Figure 6.18: Code for a Function, swap ()

278 CHAPTER 6. POINTERS

main()
int datl int dat2
100 200
A A
swap(int * | ° int * | ¢)
ptrl ptr2
int temp
77

Figure 6.19: Trace for swap() — Step 1

6.3. RETURNING TO THE PAYROLL TASK WITH POINTERS

main()

int datl int dat2
100 200
A A
swap(int * | ¢ int * |[°¢)
ptrl ptr2
int temp
100

Figure 6.20:

Trace for swap() — Step 2

279

280 CHAPTER 6. POINTERS

main()
int datl int dat2
200 200
A A
swap(int * | ° int * | ¢)
ptrl ptr2
int temp
100

Figure 6.21: Trace for swap() — Step 3

6.3. RETURNING TO THE PAYROLL TASK WITH POINTERS

main()

int datl int dat2
200 100
A A
swap(int * | ¢ int * |[°¢)
ptrl ptr2
int temp
100

Figure 6.22:

Trace for swap() — Step 4

281

282 CHAPTER 6. POINTERS

details are hidden in the functions that perform the various subtasks. The algorithm for the driver
is:

get data

repeat the following while there is more data
calculate pay
print data and results
get data

For each step of the algorithm, we will use functions to do the tasks of getting data, printing
data and results, and calculating pay. We have already written functions in Chapters 3 and 4 to
calculate pay and to print data and results, and will repeat them here for easy reference, making
some modifications and improvements. We have postponed until now writing a function to read
data as such a function would require returning more than one value. By using pointers, we now
have the tool at our disposal to implement such a function.

Before we write these functions, we should design them by describing what the functions do
and specifying the interface to these functions; i.e. by indicating the arguments and their types
to be passed to the functions (the information given to the functions) and the meaning and type
of the return values (the information returned from the function). Here are our choices:

get_data(): This function reads the id number, hours worked, and rate of pay for one employee
and stores their values indirectly using pointers. Since these values are returned indirectly,
the arguments must be pointers to appropriate objects in the calling function (main() in
our case). The function returns True, if it found new data in the input; it returns False
otherwise. Here is the prototype:

int get_data(int * pid, float * phrs, float * prate);

We use names pid, phrs, and prate, to indicate that they are pointers to cells for the id,
hours and rate, respectively. It is a good habit to distinguish between object names and
pointer names whenever there is a possibility of confusion.

print_data(): This function writes the id number, hours worked, and rate of pay passed to it. It
has no useful information to return so returns a void type. Here is the prototype:

void print_data(int id, float hrs, float rate, float pay);

print_pay(): This function is given values for the regular pay, overtime pay, and total pay and
writes them to the output. It also returns a void type.

void print_pay(float regular, float overtime, float total);

calc_pay(): Given the necessary information (hours and rate), this function calculates and returns
the total pay, and indirectly returns the regular and overtime pay. In addition to the values
of hours worked and rate of pay, pointers to regular pay and overtime pay are passed to the
function. The prototype is:

6.3. RETURNING TO THE PAYROLL TASK WITH POINTERS 283

/* File: payutil.h =/

#define REG_LIMIT 40

#define OT_FACTOR 1.5

int get_data(int *pid, float *phrs, float *prate);

void print_data(int id, float hrs, float rate);

void print_pay(float regular, float overtime, float total);

float calc_pay(float hours, float rate, float * pregular,
float * povertime);

Figure 6.23: Header file payutil.h

float calc_pay(float hours, float rate, float * pregular,
float * povertime);

Here, pregular and povertime are pointers to cells for regular and overtime pay objects in
the calling function.

All of these functions will be defined in a file, payutil.c and their prototypes are included in
payutil.h. Figure 6.23 shows the header file. We have also included the definitions for symbolic

constants REG_LIMIT and OT_FACTOR in the header file. This header file will be included in all
relevant source files.

With the information in this file (and the preceding discussion of the function) we have sufficient
information to write the driver for the program wusing the functions prior to writing the actual
code for them. Figure 6.24 shows the driver. It also includes the file, tfdef .h which defines the
macros, TRUE and FALSE.

The logic of the driver is as follows. After the program title is printed, the first statement calls
get_data() to get the id_number, hours_worked, and rate_of pay. Asindicated in the prototype,
pointers to these objects are passed as arguments so that get_data() can indirectly access them
and store values. The function, get_data(), returns True or False depending on whether there
is new data. The True/False value is assigned to the variable, moredata. The while loop is
executed as long as there is more data; i.e. moredata is True. The loop body calls on calc_pay()
to calculate the pay, print_data() to print the input data, print_pay() to print the results, and
get_data() again to get more data. Since calc_pay() returns the values of overtime and total
pay indirectly, main() passes pointers to objects which will hold these values.

The overall logic in the driver is easy to read and understand; at this top level of logic,
the details of the computations are not important and would only complicate understanding the
program. The driver will remain the same no matter how the various functions are defined. The
actual details in one or more functions may be changed at a later time without disturbing the
driver or the other functions. This program is implemented in functional modules. Such a modular
programming style makes program development, debugging and maintenance much easier.

284 CHAPTER 6. POINTERS

/* File: pay6.c
Other Files: payutil.c
Header Files; tfdef.h, payutil.h
The program gets payroll data, calculates pay, and prints out
the results for a number of people. Modular functions are used
to get data, calculate total pay, print data, and print results.
*/
#include <stdio.h>
#include "tfdef.h"
#include "payutil.h"
main()
{
/* declarations */
int id_number, moredata;
float hours_worked, rate_of_pay, regular_pay, overtime_pay, total_pay;

/* print title */
printf ("***Pay Calculation***\n\n");

/* get data and initialize loop variable */
moredata = get_data(&id_number, &hours_worked,
&rate_of_pay);

/* process while moredata */

while (moredata) {
total_pay = calc_pay(hours_worked, rate_of_pay, ®ular_pay,

&overtime_pay) ;
print_data(id_number, hours_worked, rate_of_pay);
print_pay(regular_pay, overtime_pay, total_pay) ;
moredata = get_data(&id_number, &hours_worked,
&rate_of_pay);

Figure 6.24: Code for the Driver for pay6.c

6.3. RETURNING TO THE PAYROLL TASK WITH POINTERS 285

/* File: payutil.c */

#include <stdio.h>

#include "tfdef.h"

#include "payutil.h"

/* Function prints out the input data */

void print_data(int id, float hours, float rate)

{
printf ("\nID Number = %d\n", id);
printf ("Hours Worked = %f, Rate of Pay = Jf\n",
hours, rate);
t

/* Function prints pay data */
void print_pay(float regular, float overtime, float pay)

{
printf ("Regular Pay = %f, Overtime Pay = %f\n",
regular, overtime);
printf("Total Pay = %f\n", pay);
by

Figure 6.25: Code for print_data() and print_pay()

Of course, we still have to write the various functions used in the above driver. We write each
of these functions in turn. Figure 6.25 shows the code for print_data() and print_pay() in the
file payutil.c which are simple enough.

The next two functions require indirect access. The function, calc_pay(), must indirectly
store the regular and overtime pay so the formal parameters include two pointers: preg (pointing
to the cell for regular pay) and pover (pointing to the cell for overtime pay). The function returns
the value of the total pay. It is shown in Figure 6.26. Finally, get_data() must indirectly store the
values of the id number, hours worked, and rate of pay, and return True if id number is positive,
and False otherwise. Figure 6.27 shows the code. The formal parameters pid, phrs, and prate
are pointers to objects in the calling function (main() in our case). Recall, when scanf () is called
to read data, it requires arguments that are pointers to the objects where the data is to be placed
so that it can indirectly store the values. Therefore, when get_data() calls scanf (), it must
pass pointers to relevant objects as arguments, i.e. it passes the pointers, pid, phrs, and prate.
These pointer variables point to the objects where values are to be stored. We do NOT want to
pass &pid, &phrs, &prate as these are the addresses of the pointers, pid, phrs, and prate; they
are NOT the addresses cells to hold the data. If the id number stored in *pid is not positive,
le. (¥pid <= 0), get_data() returns FALSE to indicate that there is no more data. If *pid is
positive, the rest of the function is executed, in which case the rest of the input data is read. The
value, TRUE is returned to indicate that more data is present.

The above functions are in the source file, payutil.c which must be compiled and linked with
the source program file, pay6.c. A sample session would be similar to the ones for similar previous

286 CHAPTER 6. POINTERS

/* File: payutil.c - continued */

/* Function calculates and returns total pay */

float calc_pay(float hours, float rate, float * preg, float * pover)
{ float total;

if (hours > REG_LIMIT) {
*preg = REG_LIMIT * rate;
xpover = OT_FACTOR * rate * (hours - REG_LIMIT);

+

else {
*preg = hours * rate;
*pover = 0;

+

total = *preg + *pover;
return total;

Figure 6.26: Code for calc_pay()

/* File: payutil.c - continued */
/* Function reads in the payroll data */
int get_data(int * pid, float * phrs, float * prate)

{

printf ("Type ID Number, zero to quit: ");

scanf ("4d", pid);

if (*pid <= 0) /* if ID number is <= 0, */

return FALSE; /* return O to calling function */

printf ("Hours Worked: "); /* ID number is valid, get data */

scanf ("%f", phrs);

printf ("Hourly Rate: ");

scanf ("4f", prate);

return TRUE; /* valid data entered, return 1 */
t

Figure 6.27: Code for get_data()

6.4. COMMON ERRORS 287

programs and is not shown here.

6.4 Common Errors

1. Using an uninitialized pointer. Remember, declaring a pointer variable simply allocates a
cell that can hold a pointer — it does not place a value in the cell. So, for example, a code
fragment like:

{ int * iptr;
*iptr = 2;

b

will attempt to place the value, 2, in the cell pointed to by iptr; however, iptr has not been
initialized, so some garbage value will be used as the address of there to place the value.
On some systems this may result in an attempt to access an illegal address, and a memory
violation. Avoid this error by remembering to initialize all pointer variables before they are
used.

2. Instead of using a pointer to an object, a pointer to a pointer is used. Consider a function,
read_int (). It reads an integer and stores it where its argument points. The correct version
is:

void read_int(int * pn)

{
scanf ("%d", pn);
+

pn is a pointer to the object where the integer is to be stored. When passing the argument
to scanf (), we pass the pointer, pn, NOT &pn.

3. Confusion between the address of operator and the dereference operator.

. calling_func(...)

{ int x;
called_func(*x); /* should be &x */
}
... called_func(int &px) /* should be * px */
{
}
A useful mnemonic aid is that the “address of” operator is the “and” symbol, & — both

start with letter, a.

288 CHAPTER 6. POINTERS

6.5 Summary

In this Chapter we have introduced a new data type, a pointer. We have seen how we can declare
variables of this type using the * and indicating the type of object this variable can point to, for
example:

int * iptr;
float * fptr;
char * cptr;

declare three pointer variables, iptr which can point to an integer cell, fptr which can point to
a cell holding a floating point variable, and cptr which can point to a character cell.

We have seen how we can assign values to pointer variables using the “address of” operator, &
as well as from other pointer variables. For example,

{ int x;
int * 1ip;
int * 1iptr;

iptr = &x;
ip = 1iptr;

declares an integer variable, x, and two integer pointers, ip and iptr, which can point to integers
(we can read this last declaration from right to left, as saying that “ iptr points to an int”). We
then assign the address of x to the pointer variable, iptr, and the pointer in iptr to the variable,

ip.

We have also shown how pointer variables may be used to indirectly access the value in a cell
using the dereference operator, *:

y = *iptr;

which assigns the value of the cell pointed to by iptr to the variable, y. Values may also be stored
indirectly using pointer variables:

*iptr = y;

which assigns the value in the variable, y, to the cell pointed to by iptr.

We have also seen that we can pass pointers to functions and use them to modify the values
of cells in the calling function. For example:

6.5. SUMMARY 289

main()
{ int x, y, z;

z = set_em(&x, &yl};

}
int set_em(int *a, int *b)
{
*a = 1;
*b = 2;
return 3;
}

Here the function, set_em will set the values 1, 2, and 3 into the variables x, y, and z respectively.
The first two values are assigned indirectly using the pointers passed to the function, and the third
is returned as the value of the function and assigned to z by the assignment statement in main().
This, the function, set_em(), has “effectively” returned three values.

Finally, we have used this new indirect access mechanism to write several programs, including
an update to our payroll program. As we will see in succeeding chapters, pointers are very useful
in developing complex programs. The concept of pointers may be confusing at first, however, a
useful tool for understanding the behavior of a program using pointers is to draw the memory
picture showing which to cells each pointer is pointing.

290 CHAPTER 6. POINTERS
6.6 Exercises

1. What is the output of the following code?

int x, y, z, w;
int * pa, * pb, * pc, * pd;

x = 10; y = 20; z = 30;
pa = &x;
pb = &y;

printf("%d, %d, %d\n", *pa, *pb, *pc);
pc = pb;

printf("/4d, %d, %d\n", *pa, *pb, *pc);
pb = pa;

printf("/4d, %d, %d\n", *pa, *pb, *pc);
pa = &z;

printf("/4d, %d, %d\n", *pa, *pb, *pc);
*pa = *pb;

printf("%d, %d, %d\n", *pa, *pb, *pc);

What is the output for each of the following programs:

2. #define SWAP(x, y) {int temp; temp = x; x = y; y = temp;)
main()
{ int datal = 10, data2= 20;
SWAP(datal, data2);
printf("Datal = %d, data2 = %d\n", datal, data2);
t

3. #define SWAP(x, y) {int *temp; temp = x; x = y; y = temp;)
main()
{ int datal = 10, data2= 20;
int *pl, *p2;
pl = &datal; p2 = &dataZ;
SWAP(p1, p2);
printf("*pl = %d, *p2 = %d\n", *pl, *p2);
by

Correct the code in the following problems:

4. main()
{ int x, *p;

x = 13;
ind_square(*p) ;

6.6. EXERCISES 291

ind_square(int *p)

{
*p:*p* *p;
}
5. main()

{ int x, *p;

x = 13; p = &x;
ind_square(&p) ;

}
ind_square(int &p)
{
*p:*p* *p;
}
6. main()

{ int x, *p;

x = 13;
ind_square(x);

b

ind_square(int *p)
{

*p:*p* *p;
+

7. main()
{ int x, *p;

x = 13;
ind_square(p);

b

ind_square(int *p)
{

*p:*p* *p;
+

292

CHAPTER 6. POINTERS

6.7 Problems

10.

11.

12.

13.

14.

. Write a program that initializes integer type variables, datal and data2 to the values 122

and 312. Declare pointers, ptrl and ptr2; initialize ptrl to point to datal and ptr2 to
point to data2. Swap the values of datal and data2 values using direct access and using
indirect access. Next, swap the values of the pointers, ptrl and ptr2 and print the values
indirectly accessed by the swapped pointers.

. Write a function (that returns void) which reads and indirectly stores three values in the

calling function. The types of the three data items are an integer, a character, and a float.

. Write a function maxmin(float x, float * pmax, float * pmin) where x is a new value

which is to be compared with the largest and the smallest values pointed to by pmax and
pmin, respectively. The function should indirectly update the largest and the smallest values
appropriately. Write a program that reads a sequence of numbers and uses the above function
to update the maximum and the minimum until end of file, when the maximum and the
minimum should be printed.

Repeat Problem 2.10 using functions get_course_data(), calc_gpr(), and print_gpr().

Rewrite Problem 5.1 as a function that finds the roots of a quadratic and returns them
indirectly.

Rewrite the program to solve simultaneous equations (Problem 5.10). The program should
use a function, solve_eqns () to solve for the unknowns. The function must indirectly access
objects in main() to store the solution values.

. Write a menu-driven program that uses the function, solve_eqns(), of Problem 6. The

commands are: get data, display data, solve equations, print solution, verify solution, help,
and quit. Use functions to implemnent the code for each command.

A rational number is maintained as a ratio of two integers, e.g., 20/23, 35/46, etc. Rational
number arithmetic adds, subtracts, multiplies and divides two rational numbers. Write a
function to add two rational numbers.

. Write a function to subtract two rational numbers.

Write a function to multiply two rational numbers.
Write a function to divide two rational numbers.

Write a function to reduce a rational number. A reduced rational number is one in which
all common factors in the numerator and the denominator have been cancelled out. For
example, 20/30 is reduce to 2/3, 24/18 is reduced to 4/3, and so forth.

Use the function, reduce (), of Problem 12 to implement the functions in Problems 8 through
11.

Rewrite the program of Problem 5.13 to calculate the current and the power in a resistor
using a function instead to perform the calculations. One value may be returned as a function
value, the other must be indirectly stored in the calling function.

